Name: \qquad

1. Three resistors are arranged in a circuit as shown. There is also a switch and a capacitor. R_{1} is 25.0 Ω, R_{2} is $25.0 \Omega, R_{3}$ is 45.0Ω, and C_{1} has the value of $1.25 \mu \mathrm{~F}$. (a) When S_{1} is open, what is the total current? (b) What is the voltage drop for R_{1} ? (c) Switch S_{1} is now closed for a long time. What is the charge Q on the capacitor? (d) What is the potential energy stored in the capacitor?
a. $R_{23}=\left(R_{2}{ }^{-1}+R_{3}{ }^{-1}\right)^{-1}$ $=\left((25.0 \Omega)^{-1}+(45.0 \Omega)^{-1}\right)^{-1}=16.0714286 \Omega$
$R_{\text {tot }}=R_{1}+R_{23}$ $=25.0 \Omega+16.0714286 \Omega=41.0714286 \Omega$
$I_{\text {tot }}=V / R_{\text {tot }}$

$$
=30.0 \mathrm{~V} / 41.0714286 \Omega=0.73043478 \mathrm{~A}=0.730 \mathrm{~A} \text { or } 730 \mathrm{~mA}
$$

b. $V_{1}=R_{1} I_{\text {tot }}=25.0 \Omega \cdot 0.73043478 \mathrm{~A}=18.26087 \mathrm{~V}=18.3 \mathrm{~V}$
c. $\mathrm{V}_{C}=\mathrm{V}_{23}=30.0 \mathrm{~V}-18.26087 \mathrm{~V}=11.73913 \mathrm{~V}$
$Q=C V=1.25 \times 10^{-6} \mathrm{~F} \cdot 11.73913 \mathrm{~V}=1.46739125 \times 10^{-5} \mathrm{C}=1.47 \times 10^{-5} \mathrm{C}$ or $14.7 \mu \mathrm{C}$
d. $U_{c}=\frac{1}{2} Q V=0.5 \cdot 1.46739125 \times 10^{-5} \mathrm{C} \cdot 11.73913 \mathrm{~V}=8.612948322 \times 10^{-5} \mathrm{~J}=8.61 \times 10^{-5} \mathrm{~J}$
2. You are given a 12.0 V battery, and four resistors with the following values: $100.0 \Omega, 30.0 \Omega, 20.0 \Omega$, and 10.0Ω. You also have plenty of wire that has essentially zero resistance. (a) Draw a circuit in which each resistor has current flowing through it, but in which the current from the battery is as small as possible. (b) Now draw a circuit in which the current from the battery is as large as possible. (no short circuiting of the battery, however.)
a.

b.

3. Find the: (a) total current, (b) total resistance, (c) power dissipated by R_{4}.
a. R_{1} is parallel with $R_{2} . R_{3}$ is parallel with R_{4}.
$R_{12}=\left(R_{1}^{-1}+R_{2}^{-1}\right)^{-1}=306.504065 \Omega$
$R_{34}=\left(R_{3}{ }^{-1}+R_{4}{ }^{-1}\right)^{-1}=311.9521912 \Omega$
$R_{\text {tot }}=R_{12}+R_{34}+R_{5}=968.4562562 \Omega$
$I=V / R=25 \mathrm{~V} / 968.4562562 \Omega$
$=0.025814279 \mathrm{~A}=0.026 \mathrm{~A}$ or 26 mA
b. $R_{\text {tot }}=970 \Omega$

c. $V_{4}=I \cdot R_{34}=0.025814279 \mathrm{~A} \cdot 311.9521912 \Omega$

$$
=8.052820899 \mathrm{~V}
$$

or $\mathrm{V}_{4}=\mathrm{V}_{\text {tot }} \cdot\left(\mathrm{R}_{34} / \mathrm{R}_{\text {tot }}\right)$
$=25 \mathrm{~V} \cdot(311.9521912 \Omega / 968.4562562 \Omega)$
$=8.052820899 \mathrm{~V}$
$P=V^{2} / R=(8.052820899 \mathrm{~V})^{2} / 675 \Omega=0.096070999 \mathrm{~W}=0.096 \mathrm{~W}$ or 96 mW
4. A proton has a velocity of $1.25 \times 10^{6} \mathrm{~m} / \mathrm{s}$. It travels into a magnetic field that has a strength of 1.50 T . What is the maximum force that the proton can experience?

$$
F_{B}=q v B \sin \theta=1.6 \times 10^{-19} \mathrm{C} \cdot 1.25 \times 10^{6} \mathrm{~m} / \mathrm{s} \cdot 1.50 \mathrm{~T}=3.00 \times 10^{-13} \mathrm{~N} \text { or } 300 . \mathrm{fN}
$$

5. A circuit is as shown. Find: (a) the total resistance, (b) the total current, (c) the voltage provided by the battery, and (d) the amount of energy that the battery puts out in 1.00 hours in kWh .
a. $R_{T}=R_{1}+\left(R_{3}^{-1}+\left(R_{2}+\left(R_{4}{ }^{-1}+R_{5}{ }^{-1}\right)^{-1}\right)^{-1}\right)^{-1}+R_{6}$

$$
=47.31012658 \Omega=47.3 \Omega
$$

or (in steps):
$R_{245}=R_{2}+\left(R_{4}{ }^{-1}+R_{5}{ }^{-1}\right)^{-1}=14.25925926 \Omega$
$R_{2345}=\left(R_{3}^{-1}+R_{245}\right)^{-1}=7.310126582 \Omega$
$R_{T}=R_{1}+R_{2345}+R_{6}=47.310126582 \Omega$
b. $V_{245}=V_{3}=R_{3} \cdot I_{3}=15.0 \Omega \cdot 0.165 \mathrm{~A}=2.475 \mathrm{~V}$
$I_{T}=I_{3}+I_{245}=I_{3}+V_{245} / R_{245}=0.165 \mathrm{~A}+2.475$

$\mathrm{V} / 14.25925926 \Omega$

$$
=0.3385714286 \mathrm{~A}=0.339 \mathrm{~A} \text { or } 339 \mathrm{~mA}
$$

c. $V_{B A T}=V_{1}+V_{3}+V_{6}=R_{1} I_{T}+V_{3}+R_{6} I_{T}$

$$
=15.0 \Omega \cdot 0.339 \mathrm{~A}+2.475 \mathrm{~V}+25.0 \Omega \cdot 0.339 \mathrm{~A}=16.01785714 \mathrm{~V}=16.0 \mathrm{~V}
$$

d. $E=P \cdot t=(V I) \cdot t=16.0 \mathrm{~V} \cdot 0.339 \mathrm{~A} \cdot 1.00 \mathrm{~h}=5.424 \mathrm{~Wh}$ or 0.005424 kWh
6. A circuit is arranged as shown. The battery has an internal resistance of 2.5Ω, the source of emf is 15 V . Find: (a) the total current in the circuit, and (b) The voltage provided by the battery.
a. $R_{T}=\left(25^{-1}+85^{-1}\right)^{-1} \Omega=19.31818182 \Omega$ $I_{T}=V /\left(R_{T}+R_{B A T}\right)=15 \mathrm{~V} / 21.81818182 \Omega$

$$
=0.6875 \mathrm{~A}=0.69 \mathrm{~A} \text { or } 690 \mathrm{~mA}
$$

b) $V_{B A T}=V_{E M F}-R_{B A T} \cdot I=15 \mathrm{~V}-2.5 \Omega \cdot 0.6875 \mathrm{~A}$

$$
=13.28125 \mathrm{~V}=13.3 \mathrm{~V}
$$

